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Abstract: The key intermediate 15 of Ifi-methylcarbapenem antibiotics 4 was 

synthesized enantioselectively under complete stereochemical control starting from the 

chiral monoester 1, enzymatically generated. 

We have recently reported the chemicoenzymatic approach to thienamycin 3 starting from the 

chiral monoester 13d through the bicyclic Plactam 2.3c) The strategy involved the introduction of the 

chiral center at C-84) by taking advantage of the bicyclic ring system and the epimerization of the 

stereochemistry at C-6. 

Scheme 1 

3 Thienamycin 
R’ = H, R* = CH,CH,NH, 

4 R’ = Me, R* = CH&HaNH2 

In this paper we wish to demonstrate that the bicyclic plactarn 2 can also serve as a potential 

intermediate in the synthesis of l~methylcarbapenem antibiotics 4 of current medicinal and synthetic 

interest& in the field of plactam antibiotics. The stereochemical control of the contiguous four chiral 

centers is indeed interesting from a synthetic point of view, and a variety of methods have been 

devised@ since the pioneering molecular design by the Merck group.5) Our plan to this solution was 

rather straightforward, and we tried to introduce the methyl group at 01 to the lactonic carbonyl in 2. 

The methylation would occur from the convex face by considering the structural feature of this 

bicyclo[4.2.0] ring system. 
The bicyclic plactam 2, prepared from 1 in 30% overall yields,s) was initially converted to the 

desdy]ated filactam 5 h quantitative yield (2N HCl / MeOH). Deprotonation of5 with 2.2 equiv of 

LDA (lithium diisopropylamide) in THF (tetrabdrofuran) at -78°C for 40 min and the subsequent 

reaction with methyl iodide (2.2 equiv) at -78°C for lh afforded the methylation product 6’) in 77% 
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yield as a single stereoisomer. The structure of 6 was unambigously established by X-ray 

crystallographic analysis.81 

Scheme 2 

Me 

2 R=TBDMS 6 7 

5 R=H 

It is interesting to compare the different stereochemical course of the methylation in the present 

bicyclic case and monocyclic /3-lactam cases. 53 For example, the Merck group has reported that the 

methylation of the dianion 7, generated from the corresponding monocyclic /Ha&m, gave ca 4: 1 

diastereomeric mixture of methylation products in favor of lS-isomer.435) They explained the 

predominant formation of Sisomer by considering the &membered ring chelation structure 7. In 

both cases, the methylation occurred from CT face to result in the formation of different stereoisomers. 

&r success is attributed to employing the lactone 5 as an intermediate which has a cis-fused ring 

system of bicyclo[4.2.0loctane. 

Scheme 3 

8 R’=R2=H 12 
9 R’ = R2 = TBDMS 

lo R’=H, R2=TBDMS J 

1 1 R’=TBDMS, R2=H 
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The bicyclic 6 was reduced with lithium borohydride and methanollo) in dimethoxyethane at 

50°C for 2h to produce the monocyclic p-lactam 8 in 91% yield. The coupling constant of 5.0 Hz for 

J5,6 is typical for a cis relationship in the j$lactam. The diol8 was initially transformed to the bis- 

TBDMS (t-butyldimethylsilyl) ether 9 in 89% yield1 1) (3.0 equiv TBDMSCl, 6.0 equiv imidazole / 

DMF, 40°C), and 9 was then converted to the mono-TBDMS ether 11 by the selective desilylation at 

the primary hydroxyl group (1N HCI / MeOH, O”C, 91%). 

We then examined the epimerization at C-6. This was most cleanly achieved by the following 
stepwise procedure: (1) Trimethylsilylation of the primary hydroxyl and the Plactam nitrogen with 

hexamethyldisilazane and TMSCI in pyridine; 12) (2) epimerization with 2.0 equiv trimethylsilyl 

triflatel3) and 2.1 equiv Et3N in methylene chloride at 40°C for 24h;lz) (3) detrimethylsilylation with 

1N HCI in methanol at 0°C for 10 rnin to give the desired trans plactam 14 [m.p. 88.5-89S”C, [c1]g 

-21.1’ (c 0.96, CHC13); lit@ m.p. 90-91”C, [a]$ -21.7“ (c 0.46, CHCl3)] in 58% overall yields from 

11.14) The trans stereochemistry was suggested by a smaller coupling constant (&,6=2.2HZ) than that 

of the corresponding cis isomer 11 (Jg,6=5.lHz). Furthermore, the structure was unambigously 

confirmed by comparison of spectral data with those provided by Terashima.6) 

Oxidation of 14 with PDC (pyridinium dichrornate) in DMF at room temperature afforded the 

key intermediate 15 [m.p. 145-146°C (dec.), [cllg -34.0” (c 0.37, MeOH); lit@ m.p. 146-147°C 

(dec.), [& -34.6“ (c 0.26, MeOH)] in 92% yield. Since the transformation of 15 to I@- 

methylcarbapcnems has already been established,Z@ the present study provides a new entry to lfi 

methylcarbapenem antibiotics. It should be noted that all the desired chiral centers were introduced 

under complete stereochemical control. 
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